If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-4k-16=0
a = 2; b = -4; c = -16;
Δ = b2-4ac
Δ = -42-4·2·(-16)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12}{2*2}=\frac{-8}{4} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12}{2*2}=\frac{16}{4} =4 $
| 2.x+22=42 | | q/32=6 | | 9x42=4x-13 | | 4n^2+48=28n | | 3s+12=20 | | 943-d=425 | | 105=0.8d^2-2.4d | | 70/50=11x-4/60 | | 19+5n=7(-6+8n) | | Z2-2z+1=1 | | 3s+20=12 | | 9x+6=360 | | 10x+7=360 | | Xz8= | | 10x-1=360 | | 8x^2-21x=-59x | | Y=3+(x+4) | | 5(x+10)=2(x-5) | | 5/8n+3/8=1/4+5/8n | | 6m+4(2m-6)=4 | | 5/9x+1/6=-3/4 | | 8x^3−30x^2−23x+60=0x=4 | | -27=3+5w | | 43+2x-1=180 | | 7x+3+7=17 | | (2x+3)(-2x+8)=0 | | 2+3+3=x10 | | 5x-3*4x-3=8x-7*3x-1 | | X(.06)+(x+500)(.08)=180 | | 18(x+4)=9 | | 3xX=180 | | 2k-7+3k=0 |